A Mélange of Diameter Helly-Type Theorems

نویسندگان

چکیده

A Helly-type theorem for diameter provides a bound on the of intersection finite family convex sets in $\mathbb{R}^d$ given some information all sufficiently small subfamilies. We prove fractional and colorful versions long-standing conjecture by Bárány, Katchalski, Pach. also show that Minkowski norm admits an exact if only its unit ball is polytope version those do. Finally, we theorems property “containing $k$ colinear integer points.”

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tolerance in Helly-Type Theorems

In this paper we introduce the notion of tolerance in connection with Helly type theorems and prove, using the Erdős-Gallai theorem, that any Helly type theorem can be generalized by relaxing the assumptions and conclusion, allowing a bounded number of exceptional sets or points. In particular, we analyze some of the classical Helly type theorems, such as Caratheodory’s and Tverberg’s theorems,...

متن کامل

Some Computational Aspects of Helly-type Theorems

In this paper, we prove that, for a given positive number d, if every n + 1 of a collection of compact convex sets in IE contain a set of width d (a set of constant width d, respectively) simultaneously, then all members of this collection contain a set of constant width d1 simultaneously, where d1 = d/ √ n if n is odd and d1 = d √ n+ 2/ (n+ 1) if n is even (d1 = 2d− d √ 2n/(n+ 1), respectively...

متن کامل

Helly-type theorems for polygonal curves

We prove the following intersection and covering Helly-type theorems for boundaries of convex polygons in the plane. • Let S be a set of points in the plane. Let n¿ 4. If any 2n+2 points of S can be covered by the boundary of a convex n-gon, then S can be covered by the boundary of a convex n-gon. The value of 2n+ 2 is best possible in general. If n= 3, 2n+ 2 can be reduced to 7. • Let S be a 4...

متن کامل

Helly-Type Theorems in Property Testing

Helly’s theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If S is a set of n points in R, we say that S is (k,G)-clusterable if it can be partitioned into k clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object G. In this paper, as an application of Helly’s theorem, by taking ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2021

ISSN: ['1095-7146', '0895-4801']

DOI: https://doi.org/10.1137/20m1365119